Thermische Längenänderung von Metallen
Beschreibung
Feste Körper ändern bei Erwärmung oder Abkühlung ihr Volumen und ihre Form. Im Baubereich treten vor allem Längenänderungen auf, durch die in Bauteilen Spannungen entstehen, die häufig zu Schäden führen. Der Dachdecker muss die temperaturbedingten Längenänderungen von Bauteilen berechnen können, um durch bauliche Maßnahmen Schäden zu vermeiden.
Von Längenänderungen sind in erster Linie Metalle betroffen, nicht nur weil sie sich mehr ausdehnen als andere Baustoffe, sondern auch, weil sie in größeren Längen eingebaut werden. Eine Schare (Metallband) wird bei Erwärmung länger; kühlt sie ab, zieht sie sich wieder zusammen.
Der Verbundwerkstoff Stahlbeton funktioniert u. a. aufgrund der Tatsache, dass Stahl und Beton annähernd die gleiche Dehnungszahl haben.
Berechnung
Die Längenänderung eines Bauteils wird nach folgender Formel ermittelt:
Δl = α * l0 * ΔT
so dass die Länge l dann
l = l0 + α * l0 * ΔT
beträgt.
Dabei bedeuten:
- Δl (sprich: Delta l) Längenänderung in mm
- α (sprich: Alpha) gibt an, um wieviel mm sich ein Baustoff von 1 m Länge bei einem Temperaturunterschied von 1 Kelvin ausdehnt oder zusammenzieht.
- l Einbaulänge des Bauteils in m
- Δt (sprich: Delta t) Temperaturdifferenz in Kelvin (K)
Wichtige Temperaturdehnungszahlen von Baustoffen
Baustoff | Temperaturdehnungszahl α
in mm je m Länge und Grad Temperaturdifferenz |
Ziegel-Mauerwerk | 0,006 |
Beton | 0,0118 |
Baustahl | 0,012 |
Kupfer | 0,017 |
Titan Zink |
0,022 |
Aluminium | 0,024 |
Blei | 0,02 |
PVC | 0,08 |
Beispielberechnung
Berechne die Längenänderung einer Zinkschare, die eine Einbaulänge von
10,00 m hat und einer Temperaturänderung von -20° C auf +80° C.
ΔT = 100 K
Δl = α x l0 x ΔT
Δl = 0,022 x 10,00 x 100
Δl = 22 mm