Berechnung der Gratlänge: Unterschied zwischen den Versionen

Aus Dachdeckerwiki
Zur Navigation springen Zur Suche springen
 
(5 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__FORCETOC__
 
__FORCETOC__
==Einführung==
+
[[Category: Werkstoffkunde]]
 +
==Walmdach gleicher Dachneigung==
 
[[Bild:Gratberechnung01.png|left]]
 
[[Bild:Gratberechnung01.png|left]]
 
Die Gratlänge lässt sich am einfachsten in dem blau eingezeichneten Dreieck berechnen, denn die Sparrenlänge hat man meist für die Errechnung der Dachfläche bereits ermittelt, und die halbe Gebäudebreite ist bekannt. Dann lässt sich die Gratlänge mit Hilfe des Pythagoras in diesem Dreieck ermitteln:  
 
Die Gratlänge lässt sich am einfachsten in dem blau eingezeichneten Dreieck berechnen, denn die Sparrenlänge hat man meist für die Errechnung der Dachfläche bereits ermittelt, und die halbe Gebäudebreite ist bekannt. Dann lässt sich die Gratlänge mit Hilfe des Pythagoras in diesem Dreieck ermitteln:  
  
Grat² = (halbe Gebäudebreite)² + (Sparrenlänge)²
+
[[Bild:Grat gleich wurzel.gif]]
  
 
Zu beachten ist, dass dieses (blaue) Dreieck NICHT identisch ist mit dem (rot eingezeichneten) Dreieck zur Ermittlung der Sparrenlänge!
 
Zu beachten ist, dass dieses (blaue) Dreieck NICHT identisch ist mit dem (rot eingezeichneten) Dreieck zur Ermittlung der Sparrenlänge!
Zeile 10: Zeile 11:
 
Bei gleicher Dachneigung ist jedoch die Sparrenlänge in dem rot eingetragenen Dreieck identisch mit der Sparrenlänge in dem blau eingezeichneten Dreieck.
 
Bei gleicher Dachneigung ist jedoch die Sparrenlänge in dem rot eingetragenen Dreieck identisch mit der Sparrenlänge in dem blau eingezeichneten Dreieck.
 
<br style="clear:both"/>
 
<br style="clear:both"/>
 +
[[Bild:Video_icon.png|left]]
 +
[http://ddschule.dnsalias.org/ddschule/video/mediawiki/gratlaengenberechnung.php Berechnung der Gratlänge]
 +
 +
<br style="clear:both"/>
 +
 +
==Walmdach ungleicher Dachneigung==
 
[[Bild:Gratberechnung02.png|left]]Bei ungleicher Dachneigung muss evtl. die Sparrenlänge in dem grün eingezeichneten Dreieck (2. Isometrie) mit Hilfe der Dachneigung und/oder Pythagoras o.ä. ermittelt werden.  
 
[[Bild:Gratberechnung02.png|left]]Bei ungleicher Dachneigung muss evtl. die Sparrenlänge in dem grün eingezeichneten Dreieck (2. Isometrie) mit Hilfe der Dachneigung und/oder Pythagoras o.ä. ermittelt werden.  
 
<br style="clear:both"/>
 
<br style="clear:both"/>
Zeile 38: Zeile 45:
 
==weiterführende Links==
 
==weiterführende Links==
 
* [[Berechnung der Kehllänge]]
 
* [[Berechnung der Kehllänge]]
 +
* [[Bestimmung der Gratneigung]]

Aktuelle Version vom 21. Dezember 2010, 17:35 Uhr

Walmdach gleicher Dachneigung

Gratberechnung01.png

Die Gratlänge lässt sich am einfachsten in dem blau eingezeichneten Dreieck berechnen, denn die Sparrenlänge hat man meist für die Errechnung der Dachfläche bereits ermittelt, und die halbe Gebäudebreite ist bekannt. Dann lässt sich die Gratlänge mit Hilfe des Pythagoras in diesem Dreieck ermitteln:

Grat gleich wurzel.gif

Zu beachten ist, dass dieses (blaue) Dreieck NICHT identisch ist mit dem (rot eingezeichneten) Dreieck zur Ermittlung der Sparrenlänge!

Bei gleicher Dachneigung ist jedoch die Sparrenlänge in dem rot eingetragenen Dreieck identisch mit der Sparrenlänge in dem blau eingezeichneten Dreieck.

Video icon.png

Berechnung der Gratlänge


Walmdach ungleicher Dachneigung

Gratberechnung02.png

Bei ungleicher Dachneigung muss evtl. die Sparrenlänge in dem grün eingezeichneten Dreieck (2. Isometrie) mit Hilfe der Dachneigung und/oder Pythagoras o.ä. ermittelt werden.


Beispiel

geg.:

Walmdach gleiche Dachneigung

Breite: 10.34 m
Dachneigung: 48°

Lösung

1. Berechnung der Dachhöhe (rotes Dreieck)

  5.17 m * tan 48° = 5.74 m


2. Berechnung der Sparrenlänge (rotes Dreieck)

  (5.74 m)² + (5.17 m)² = 59.68 m²
Wurzel (59.68 m²) = 7.73 m

3. Berechnung der Gratlänge (blaues Dreieck)

  (5.17 m)² + (7.73 m)² = 86.48 m²
Wurzel (86.48 m²) = 9.3 m

weiterführende Links